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ABSTRACT 

Objectives: This study evaluated the accuracy of an artificial intelligence (AI) model in identifying retinal 
lesions, validated its performance on a Filipino population dataset, and evaluated the impact of dataset diversity 
on AI analysis accuracy. 

Methods: This cross-sectional, analytical, institutional study analyzed standardized macula-centered fundus 
photos taken with the Zeiss Visucam®. The AI model's output was compared with manual readings by trained 
retina specialists. 

Results: A total of 215 eyes from 109 patients were included in the study. Human graders identified 109 eyes 
(50.7%) with retinal abnormalities. The AI model demonstrated an overall accuracy of 73.0% (95% CI 66.6% 
– 78.8%) in detecting abnormal retinas, with a sensitivity of 54.1% (95% CI 44.3% – 63.7%) and specificity of 
92.5% (95% CI 85.7% – 96.7%). 

Conclusions: The availability and sources of AI training datasets can introduce biases into AI algorithms. In 
our dataset, racial differences in retinal morphology, such as differences in retinal pigmentation, affected the 
accuracy of AI image-based analysis. More diverse datasets and external validation on different populations are 
needed to mitigate these biases. 
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Artificial Intelligence (AI) is a potentially 
paradigm-changing innovation in diagnosing and 
treating retinal disease. Deep Learning (DL) is a 
newer and more sophisticated subtype of AI that is 
commonly used to process information from text, 
audio, and photographs. Whereas older AI models 
require pre-programmed instructions to analyze 
information, newer DL algorithms can build on 
previous information it has been fed to essentially 
“learn” new things and draw conclusions.1 For 
example, DL algorithms are first taught what a retinal 
fundus photo is. It learns how to identify normal 
landmarks. Once it can properly do this and 
encounters a retinal lesion, it learns to identify it as 
an abnormal finding. It can be taught what this lesion 
is, and the DL algorithm identifies features and 
relates it to what it was previously trained on. When 
it encounters it in another image, it should then be 
able to identify what it is, despite variations in how it 
looks. 

Applications in medicine include the analysis of 
diagnostic examinations, including retinal fundus 
photographs. These AI models can identify visually-
threatening conditions and guide patient treatment. 
AI is particularly useful in low-resource settings 
where access to specialized care is limited. However, 
the performance of AI algorithms largely depends on 
the dataset used for training.2,3 

This study evaluated the performance of a 
commercially available AI model that was trained 
primarily on a dataset comprised of East Asian 
fundus photos.4 It is an image-based DL algorithm 
that can identify and outline the following retinal 
lesions: drusen, hemorrhages, hard exudates, cotton-
wool spots, vascular abnormalities, glaucomatous 
disc changes, membranes, chorioretinal atrophy or 
scars, and macular holes.4 External validation was 
done on open-source datasets available online; 
however, these external datasets were limited to 
lesions seen in Diabetic Retinopathy (DR): 
hemorrhages, hard exudates, and cotton-wool spots.4 
We assessed its diagnostic performance on a local 
Filipino population dataset and determined if there 
are racial differences in retinal features that may 
affect AI performance. 

METHODS 

This analytical, cross-sectional study retrieved 
fundus photos from 123 patients (246 eyes) from the 

database of The Medical City Eye Instrument Center. 
All photos were taken using the Zeiss Visucam® 
fundus camera (Oberkochen, Germany). Only 
fundus photos with clear ocular media from patients 
of Filipino descent were included. Additionally, all 
fundus photos included in this dataset were centered 
on the macula with full view of the optic nerve nasally 
(i.e. ETDRS standard fundus photo field 2).5 Fundus 
photos with media opacities, views other than 
standard fundus photo field 2 (i.e. peripheral retina), 
and those with lesions other than those previously 
mentioned were excluded.  

 

Data Retrieval 

The official readings of the colored retinal fundus 
photos were retrieved from the electronic medical 
record. Each reading contained the analysis done by 
2 board-certified retina specialists (hereafter referred 
to as “human graders”), which included a text 
description of all the lesions seen in the fundus photo 
along with an overall diagnosis or impression.  
Information on the presence or absence of specific 
retinal lesions in each fundus photo, as well as 
descriptive information such as age, sex and race, 
were tabulated in a customized data collection form. 
The photos were then submitted to the AI model for 
analysis.   

 

Data Analysis 

Prior to initiation of the study, the investigators 
agreed not to disclose the identity of the AI 
developer and AI model used. Examples of fundus 
photos after AI image analysis are shown in Figure 
1. Sensitivity for each lesion was set to the 
manufacturer’s default setting of “medium.” 
Findings were similarly tabulated in the same data 
collection form. Additionally, fundus photos that had 
any of the previously mentioned retinal lesions were 
labeled as “abnormal retinas.” 

This study used a binary system of “1” and “0” to 
indicate the presence or absence of a retinal lesion or 
abnormal retina. Topographic locations of the 
lesions were not taken into account. Fundus photos 
were assigned an alphanumerical code in our 
customized data collection form for identification. 
The values from human graders and AI analysis were 
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totaled. Values totaling “2” or “0” indicated that the 
findings were congruent (both were either “1” 
meaning they both identified the lesion or “0” 
meaning they both did not identify the lesion). Values 
totaling “1” indicated that the findings were not 
congruent (either human or AI had a value of “1” 
and the other had a value of “0” meaning only one of 
these groups identified the lesion). 

Figure 1. Examples of fundus photographs after AI image analysis. The 
AI algorithm highlights clusters of lesions and labels them accordingly. 
Pictured here are drusen, hemorrhages, hard exudates, cotton wool 
patches (A); hard exudates and hemorrhages (B); chorioretinal atrophy 
(C); glaucomatous disc change (D). 

This study was approved by The Medical City 
Institutional Review Board. 

 

Statistical Analysis 

A minimum sample size of 175 fundus photos 
was computed for this study based on a 5% level of 
significance and a probability of disagreement of 
0.13. Descriptive statistics summarized the general 
and clinical characteristics of the fundus photos, 
including their age and sex. Kappa agreement analysis 
determined the level of agreement between the 
analysis of the AI model versus human graders. 
Sensitivity (Sn), specificity (Sp), positive predictive 
value (PPV), negative predictive value (NPV), 
positive likelihood ratio (LR+), negative likelihood 
ratio (LR-), and diagnostic accuracy (Acc) were 
reported with their 95% confidence intervals to 
assess the diagnostic performance of Fundus AI in 

detecting retinal lesions. Macular holes were excluded 
from analysis as no fundus photos containing this 
lesion were found in this dataset. 

RESULTS 

A total of 215 eyes from 109 patients were 
included in the study (Table 1). The mean age of 
patients was 50.94 (±13.54) years. Approximately 
half (54.13%) of this dataset were of fundus photos 
from male patients.  There were 109 fundus photos 
(50.70%) labeled as abnormal retinas based on the 
previous analysis of human graders. The most 
common lesions identified by human graders were 
hemorrhages in 51 fundus photos (23.72%), drusen 
in 49 fundus photos (22.79%), and glaucomatous 
disc changes in 21 fundus photos (9.77%). No 
fundus photos with macular holes were identified in 
this dataset. In contrast, the AI model identified 
fewer lesions, with only 67 fundus photos (31.16%) 
identified as an abnormal retina. Drusen were 
identified in 28 fundus photos (13.02%), 
hemorrhages in 19 fundus photos (8.88%), and 
glaucomatous disc changes in 17 fundus photos 
(7.91%) (Table 2). 

Table 1. Demographic profile of patients  

 

Table 2. Frequency of fundus lesions in our Filipino dataset (n=215) 

 

Agreement rates between human graders and the 
AI model were near perfect for cotton wool spots (κ 
= 0.84, 95% CI 0.65 - 1.00, p<0.001) and moderate 
for drusen (κ = 0.46, 95% CI 0.31 - 0.60, p<0.001), 

Demographic Profile N=109 patients 

Mean age + SD, years 50.94±13.54 

Sex, n(%)  

Male 59 (54.13) 

Female 50 (45.87) 

Lesion Type Detected by 
AI, n(%) 

Detected by 
Human 

Graders, n(%) 
Drusen 28 (13.02) 49 (22.79) 
Hemorrhage 19 (8.88) 51 (23.72) 
Hard Exudate 8 (3.70) 15 (6.98) 
Cotton Wool Spot 8 (3.72) 11 (5.12) 
Vascular Abnormality 0 (0.00) 11 (5.12) 
Glaucomatous Disc Change 17 (7.91) 21 (9.77) 
Membrane 0 (0.00) 4 (1.86) 
Chorioretinal Atrophy/Scar 3 (1.40) 3 (1.40) 
Abnormal Retina 67 (31.16) 109 (50.70) 
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hemorrhages (κ = 0.44, 95% CI 0.30 - 0.59, p<0.001), 
and glaucomatous disc changes (κ = 0.48, 95% CI 
0.28 - 0.69, p<0.001) (Table 3). AI analysis had the 
highest accuracy at 98.6% (95% CI 96.0% – 99.7%) 
for identifying cotton wool spots, with a specificity 
of 100% (95% CI 98.2% – 100%) and sensitivity of 
72.7% (95% CI 39.0% – 94.0%). It had the least 
accuracy for identifying drusen (83.7% [95% CI 
78.1% – 88.4%]) and hemorrhages (84.1% [95% CI 
78.5% – 88.7%]) (Table 4).  

Table 3. Agreement rates between the AI model and human grader 
analysis (n=215) 

Lesion Type Concordant 
Findings (%) 

Discordant 
Findings (%) 

Kappa 
(95% CI) 

p-value 

Drusen 83.72 17.28 0.46 (0.31 – 
0.60) 

<0.001 

Hemorrhage 71.52 28.48 0.44 (0.30 – 
0.59) 

<0.001 

Hard Exudate 95.82 4.19 0.32 (0.12 – 
0.53) 

<0.001 

Cotton Wool 
Spot 

91.54 8.46 0.84 (0.65 – 
1.00) 

<0.001 

Vascular 
Abnormality 

94.88 5.12 0.00 (0.00 – 
0.00) 

<0.001 

Glaucomatous 
Disc Change 

83.87 16.13 0.48 (0.28 – 
0.69) 

<0.001 

Membrane 98.14 1.86 0.00 (0.00 – 
0.00) 

<0.001 

Chorioretinal 
Atrophy/Scar 

98.14 1.86 0.32 (-0.17 – 
0.82) 

<0.001 

 

DISCUSSION 

This study serves as an external validation of the 
AI model on a Filipino population. In our dataset, 
the AI had the best performance at identifying 
cotton-wool spots but least in identifying drusen and 
hemorrhages. It performed better in more severe 
disease with many clusters of lesions. Less common 
findings, such as chorioretinal atrophies/scars, and 
retinal membranes, were underrepresented in this 
dataset. There were no fundus photos with macular 
holes present in this dataset. 

The United States Food and Drug Administration 
requires a minimum performance threshold 
sensitivity of 85.0% and specificity of 82.5% for an 
AI model to be used for screening for more than mild 
diabetic retinopathy (DR).6 High sensitivity values 
are crucial for detecting early manifestations of 
disease, while specificity determines the burden of 
patient load sent for further evaluation. Studies show 
that AI models can have acceptable performance on 
particular datasets, with sensitivity performance 

varying in between datasets.7 Wang et al. used DL 
algorithms to detect referable DR in retinal fundus 
photographs with a sensitivity of 97% and specificity 
of 87.9%.7 Jeong et al.  reviewed the performances of 
different AI models in the diagnosis and screening of 
DR, age-related macular degeneration (AMD), and 
glaucomatous optic neuropathy.8 These AI models 
were trained on a binary system to detect referable vs 
non-referable disease, as well as a separate, stage-
based system. Sensitivity performance of these AI 
models ranged from 82.1% to 98.9% and specificity 
from 94.1% to 97.3%.8 

Table 4. Diagnostic performance of the AI model using human grader 
analysis as reference standard (n=215) 

Lesion Type 
Sn 

(95% 
CI) 

Sp 
(95% 
CI) 

LR+ 
(95% 
CI) 

LR- 
(95% 
CI) 

PPV 
(95% 
CI) 

NPV 
(95% 
CI) 

Acc 
(95% 
CI) 

Drusen 
 

42.9 
(28.8 – 
57.8) 

95.8 
(91.5 – 
98.3) 

10.2 
(4.6 – 
22.5) 

0.6 
(0.5 – 
0.8) 

75 
(55.1 – 
89.3) 

85 
(79.1 – 
89.8) 

83.7 
(78.1 – 
88.4) 

Hemorrhage 
 

35.3 
(22.4 – 
49.9) 

99.4 
(96.6 – 
100) 

57.5 
(7.9 – 
420) 

0.7 
(0.5 – 
0.8) 

94.7 
(74.0 – 
99.9) 

83.1 
(77.1 – 
88.1) 

84.1 
(78.5 – 
88.7) 

Hard Exudate 

20.0 
(2.52 – 
55.61) 

 

99.52 
(97.34 

– 
99.99) 

41.40 
(22.4 – 
419) 

0.8 
(0.59 –
1.10) 

66.67 
(16.49 

–95.29) 

96.26 
(94.97 

–97.23) 

95.85 
(92.27 

–98.09) 

Cotton Wool 
Spot 

 

72.7 
(39 – 
94) 

100 
(98.2 – 
100) 

- 
0.3 

(0.1 – 
0.7) 

100 
(63.1 – 
100) 

98.6 
(95.8 – 
99.7) 

98.6 
(96.0 – 
99.7) 

Vascular 
Abnormality 

 

0 
(0 – 
28.5) 

100 
(98.2 – 
100) 

- 1.00 - 
94.9 

(94.9 – 
94.9) 

94.9 
(91.0 – 
97.4) 

Glaucomatous 
Disc Change 

 

47.6 
(25.7 – 
70.2) 

96.4 
(92.7 – 
98.5) 

13.2 
(5.6 – 
31.0) 

0.5 
(0.4 – 
0.8) 

58.8 
(32.9 – 
81.6) 

94.4 
(90.3 – 
97.2) 

91.6 
(87.1 – 
95.0) 

Membrane 
 

0 
(0 – 
60.2) 

100 
(98.3 – 
100) 

- 
1.00 

(1.00 – 
1.00) 

- 
98.1 

(98.1 – 
98.1) 

98.1 
(95.3 – 
99.5) 

Chorioretinal 
Atrophy / 

Scar 

33.3 
(0.8 – 
90.6) 

99.1 
(96.6 – 
99.9) 

35.3 
(4.3 – 
292) 

0.7 
(0.3 – 
1.5) 

33.3 
(0.8 – 
90.6) 

99.1 
(96.6 – 
99.9) 

98.1 
(95.3 – 
99.5) 

Abnormal 
Retina 

54.1 
(44.3 – 
63.7) 

92.5 
(85.7 – 
96.7) 

7.2 
(3.6 – 
14.3) 

0.5 
(0.4 – 
0.6) 

88.1 
(77.8 – 
94.7) 

66.2 
(58.0 – 
73.8) 

73.0 
(66.6 – 
78.8) 

Sn - sensitivity; Sp - specificity, LR+ - positive likelihood ratio,  LR- - 
negative livelihood ratio, PPV - positive predicative value, NPV - 
negative predicative value, Acc – accuracy, CI - confidence interval  

Most image-based AI models are trained to 
diagnose disease; however, this AI model identifies 
specific retinal fundus findings without giving an 
overall diagnosis.4 The training dataset included 
103,262 gradable fundus photos from eyes of East 
Asian descent.4 Sensitivity ranged from 88.2% to 
99.1%, and specificity from 90.5% to 97.9%. Table 
5 shows a comparison of the sensitivity and 
specificity of the internal training and external 
validation datasets used by the developer and our 
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Filipino dataset. Only hemorrhages, hard exudates, 
and cotton-wool spots were included in this table as 
these were the only lesions represented in all three 
datasets. Compared to the internal training dataset, 
the AI model had decreased performance in the 
external validation dataset, and even more 
significantly decreased performance in our Filipino 
dataset. 

Table 5. Comparison of the AI model’s performance for the analysis of 
hemorrhages, hard exudates and cotton wool spots across the internal 
East Asian training dataset,3 external validation datasets3 and this study’s 
Filipino dataset. 

Lesion Type 

East Asian 
Dataset3 

External 
Dataset3 

Filipino 
Dataset 

Sn, 
% 

Sp, 
% 

Sn, 
% 

Sp, 
% 

Sn, 
% 

Sp, 
% 

Hemorrhage 97.2 96.8 88.9 96.6 35.3 99.4 
Hard Exudate 99.1 97.2 92.6 100.0 20.0 99.52 
Cotton Wool 

Spot 98.4 95.4 92.3 94.0 72.7 100.0 

Sn: Sensitivity; Sp: Specificity 
 

Gudis et al. discussed how the availability and 
sources of datasets create unintentional biases in AI 
models.9 As a hypothetical example, an AI model 
trained to detect cancer survival rates may 
erroneously associate racial and demographic 
disparities to poor survival rates.9 Applied to 
ophthalmology, AI models may be more likely to 
associate lesions with certain populations. For 
example, since AMD is more common in the 
Caucasian population, it may erroneously associate 
drusen to be a finding seen in Caucasian retinas only.  

Racial differences in morphology can affect AI 
performance. For instance, retinal differences among 
Chinese, Malay, and Indian descent include vessel 
caliber, tortuosity, bifurcation, and fractal dimension 
and pigmentation.10-12 These play an important role 
in the way the AI analyzes the fundus photos. In 
lighter-skinned individuals, there is better 
demarcation of the retinal vasculature from the 
underlying retina because there is more contrast 
between the dark red color of retinal vessels and the 
lighter orange retinal pigmentation.12 This decrease in 
contrast affects the AI model algorithm’s 
performance, as one of the filters used in DL 
algorithms is the edge detection or outlining of 
structures.13  

We generated color histograms from 
representative Filipino, East Asian and Caucasian 
fundus photos from The Medical City Eye 
Instrument Center’s database using Affinity Photo 

image editing software (Nottingham, United 
Kingdom) (Figure 2). Filipino retinas displayed low 
contrast especially between retinal vessels and the 
surrounding retinal tissue. Color histogram analysis 
showed red, green and blue (RGB) color channels 
clustered towards the left of the histogram (darker 
colors) with significant overlap of the color channels. 
Interestingly, the green channels appeared more 
pronounced than the red channels in the Filipino 
fundus photo. The East Asian fundus photo had a 
more defined separation of the RGB color channels, 
and a more pronounced red channel compared to the 
Filipino fundus photo. The Caucasian fundus photo 
appeared more vibrant with better contrast 
qualitatively. There was greater separation of the 
RGB color channels across the spectrum with less 
overlap of the channels. There was also better 
distribution across the spectrum towards the right 
(brighter colors) and the left (darker colors) of the 
histogram. 

Figure 2. Comparison of a Filipino (A), East Asian (B) and Caucasian 
(C) fundus photo with the corresponding color histogram demonstrating 
differences in retinal pigmentation.   

We also performed individual pixel color 
analysis on a representative fundus photo in our 
dataset in Figure 3 using the same image editing 
software. Hex codes are a set of alphanumeric values 
that determine the combination of colors in an RGB 
format. It allows us to objectively compare the 
differences in color wavelengths and brightness of a 
specific color on a pixel. The first two values 
represent the levels of red; the second two values 
represent the levels of green; the last two values 
represent the levels of blue. Higher values (letters or 
numbers) represent more vivid representations of a 
specific color. Figure 3 shows a fundus photo in our 
dataset with a faint flame-shaped hemorrhage against 
a deeply pigmented retina. We sampled the color 
from a pixel within the lesion and compared it to that 
of a pixel from the surrounding background retina 
and found that the color difference was very minimal. 
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4 out of the 6 total values were equal between the two 
points. The 2 dissimilar values were also only a few 
orders of magnitude different — for example, the 
hex code for a pixel in the hemorrhage in Figure 3 is 
#54381E, and the surrounding retina is #50381B. In 
this case, the 2nd value “4” is only 4 steps away from 
“0,” and the 6th value “E” is only 3 steps away from 
“B.”  What this shows is that this pixel within the 
hemorrhage is only slightly more red and slightly 
more blue, with equal levels of green, compared to a 
representative pixel in the surrounding retina. Even 
qualitatively, the edges of this lesion were very 
difficult to delineate from the surrounding 
pigmented retina. The AI failed to identify this 
finding in our dataset. In contrast, cotton-wool spots, 
which are brighter yellow and appear more distinct 
than hemorrhages, were more readily identified by 
the AI model, as seen in Figure 4. Hex code analysis 
of representative pixels showed a greater color 
difference, with only 1 out of 6 values equal between 
the two points. This is an example of a fundus photo 
that the AI model was able to properly analyze. 

An ideal dataset should include an equal number 
of normal and abnormal datapoints from a diverse 
population. Some sources even note that datasets 
should also include low-quality images to mimic real-
world scenarios.14,15 Imbalances in datasets create 
biases in DL algorithms, as the AI models generally 
do not have an understanding of disease prevalence 
in the real world, unlike human graders.  

A study by Burlina et al. used generative AI 
techniques to create synthetic retinal images out of 
known abnormal retinas of light-skinned individuals 
and normal retinas of dark-skinned individuals. They 
essentially created new fundus photos of dark-
skinned individuals with retinal lesions that they 
could use to train their AI model, as these were 
lacking in their dataset. After re-training their AI 
model with these new images, they noted improved 
performance at analyzing fundus photos of dark-
skinned individuals.16 This shows that the paucity of 
these images in the dataset does affect the AI model’s 
performance, as the DL algorithm learns how to 
discern the nuances in this group compared to other 
groups. 

This disparity in AI datasets is fueled by the fact that 
most AI models are developed in resource-rich 
countries, where their models are trained first on an 
internal dataset comprised of the local population. In 

a review by Celi et al. in 2022, they looked at the 
distribution of nationalities used in datasets for AI in 
medicine. They found that most models were initially 
trained with American and Chinese data.17 They 
postulate that this is probably due to the domination 
of these countries in the technology industry, 
utilizing their resources for cloud storage and 
computer processing speed to analyze massive 
amounts of data.17 However, this means that 
resource-poor countries are underrepresented in 
their data. Reports say that up to 45% of the global 
population may not have proper representation in 
ophthalmic datasets used to train AI models.18 This 
highlights the importance of utilizing more diverse 
datasets in training and validating AI models. 

Figure 3. Hex code analysis of discrete pixels within a faint flame-shaped 
hemorrhage compared to the surrounding retina with deep pigmentation. 
The AI failed to identify this lesion in our dataset. 

 

This study was limited by the small dataset of 
fundus photos available. Apart from dataset diversity, 
dataset volume is also needed to properly train and 
validate AI models. Massive amounts of fundus 
photos need to be analyzed for AI models to 
recognize patterns. A significant number of these 
fundus photos should contain abnormal findings, 
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otherwise specificity values will be elevated simply by 
the AI identifying normal fundus photos.  

Figure 4. Hex code analysis of discrete pixels within a cotton-wool spot 
compared to the surrounding retina.  

In this dataset, only 50.7% of the fundus photos 
were labeled as “abnormal retinas.” On manual 
evaluation by human graders, most of these fundus 
photos displayed only early or mild retinal disease, i.e. 
few faint hemorrhages or single, small druse. Based 
on how the AI model processes data, it may have 
more difficulty identifying these faint lesions on 
“medium” sensitivity settings. Running the images 
on a “high” setting could increase its sensitivity, but 
at the cost of specificity, i.e. increasing the number of 
false positives.  

Based on our testing of this particular AI model 
on our Filipino dataset, it will need further training 
and validation on a Filipino population to increase 
sensitivity before it can be used for screening 
purposes. The low sensitivity performance means the 
AI model misses a significant number of fundus 
photos with retinal lesions. Although it can be argued 
that most of these fundus photos show non-referable 
disease to begin with, its performance will still need 
to be improved prior to clinical use. A larger and 

more diverse dataset with more abnormal fundus 
photos will also be needed to better assess 
performance, especially for chorioretinal atrophies 
and scars, macular holes, and retinal membranes. 

AI analysis of fundus photos shows promise as a 
tool for screening retinal disease; however, it must be 
optimized for the target population by training it with 
diverse and representative datasets. Addressing AI 
model optimization and dataset bias by incorporating 
data from various sources is crucial. Further training 
and validation on a Filipino population are needed to 
improve sensitivity before clinical use. A larger 
dataset with more abnormal fundus photos is also 
necessary for better assessment, especially for less 
common lesions. Generation of synthetic retinal 
images using generative AI techniques shows 
promise as an alternative way to mitigate these biases, 
especially in populations that have a paucity of 
available data. 
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